Efficient Wetland Surface Water Detection and Monitoring via Landsat: Comparison within situ Data from the Everglades Depth Estimation Network
نویسنده
چکیده
The U.S. Geological Survey is developing new Landsat science products. One, named Dynamic Surface Water Extent (DSWE), is focused on the representation of ground surface inundation as detected in cloud-/shadow-/snow-free pixels for scenes collected over the U.S. and its territories. Characterization of DSWE uncertainty to facilitate its appropriate use in science and resource management is a primary objective. A unique evaluation dataset developed from data made publicly available through the Everglades Depth Estimation Network (EDEN) was used to evaluate one candidate DSWE algorithm that is relatively simple, requires no scene-based calibration data, and is intended to detect inundation in the presence of marshland vegetation. A conceptual model of expected algorithm performance in vegetated wetland environments was postulated, tested and revised. Agreement scores were calculated at the level of scenes and vegetation communities, vegetation index classes, water depths, and individual EDEN gage sites for a variety of temporal aggregations. Landsat Archive cloud cover attribution errors were documented. Cloud cover had some effect on model performance. Error rates increased with vegetation cover. Relatively low error rates for locations of little/no vegetation were unexpectedly dominated by omission errors due to variable substrates and mixed pixel effects. Examined discrepancies between satellite and in situ modeled inundation demonstrated the utility of such comparisons for EDEN database improvement. Importantly, there seems no trend or bias in candidate algorithm performance as a function of time or general hydrologic conditions, an important finding for long-term monitoring. The developed database and knowledge gained from this analysis will be used for improved evaluation of candidate DSWE algorithms as well as other measurements made on Everglades surface inundation, surface water heights and vegetation using radar, lidar and hyperspectral instruments. Although no other sites have such an OPEN ACCESS Remote Sens. 2015, 7 12504 extensive in situ network or long-term records, the broader applicability of this and other candidate DSWE algorithms is being evaluated in other wetlands using this work as a guide. Continued interaction among DSWE producers and potential users will help determine whether the measured accuracies are adequate for practical utility in resource management.
منابع مشابه
Comparative analysis of remote sensing water indexes for wetland water body monitoring using Landsat images and the Google Earth Engine Platform0 (A Case study: Meighan Wetland, Iran)
Wetlands are dynamic and complex aquatic ecosystems that play an important role in the survival of many plant and animal species. This study modeled the spatio-temporal changes of the Arak Meighan wetland during 1985–2020 using the multi-temporal Landsat images. In doing so, the applicability of different satellite-derived indexes including NDVI, NDWI, MNDWI, AWEIsh , AWEInsh , and WRI was inve...
متن کاملMonitoring and Prediction of Land Use/Cover Changes in Shadegan International Wetland, Iran
Quantifying land use/land cover changes is essential to monitor and assess the ecological consequences of human disturbances. Ecological condition and water quality of wetlands are highly related to the landscape characteristics, including land use/land cover (LULC) types and their fractions in the upland and the surrounding landscape. The changing characteristics of LULC in Shadegan Internatio...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملSubpixel Inundation Mapping Using Landsat-8 OLI and UAV Data for a Wetland Region on the Zoige Plateau, China
Wetland inundation is crucial to the survival and prosperity of fauna and flora communities in wetland ecosystems. Even small changes in surface inundation may result in a substantial impact on the wetland ecosystem characteristics and function. This study presented a novel method for wetland inundation mapping at a subpixel scale in a typical wetland region on the Zoige Plateau, northeast Tibe...
متن کاملAdvection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades
[1] The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015